Five 8,11-Substituted Pentacyclo[5.4.0.0^{2,6}.0^{3,10}.0^{5,9}]undecanes

BY JUDITH L. FLIPPEN-ANDERSON, CLIFFORD GEORGE AND RICHARD GILARDI

Laboratory for the Structure of Matter, Naval Research Laboratory, Washington, DC 20375, USA

WALTER W. ZAJAC JR AND THOMAS R. WALTERS

Department of Chemistry, Villanova University, Villanova, PA 19085, USA

AND ALAN MARCHAND, PARITOSH R. DAVE AND BENNEY E. ARNEY JR

Department of Chemistry, University of North Texas, Denton, Texas 76203-5068, USA

(Received 24 April 1990; accepted 17 July 1990)

Abstract. 11-Bromo-11-nitropentacyclo-(1) $[5.4.0.0^{2,6}.0^{3,10}.0^{5,9}]$ undecane-8-one. $C_{11}H_{10}BrNO_3$, $M_r = 284.11$, monoclinic, $P2_1/n$, a = 11.155 (3), b =8.180 (2), c = 12.387 (3) Å, $\beta = 113.54$ (2)°, V = 1036.2 (5) Å³, Z = 4, $D_x = 1.82$ Mg m⁻³, λ (Cu K α) $= 1.54184 \text{ Å}, \ \mu = 5.39 \text{ mm}^{-1}, \ F(000) = 568, \ T =$ 295 K, R = 0.038 for 1384 unique observed reflec-(2) 8,11-Dibromo-8,11-dinitropentacytions. $clo[5.4.0.0^{2.6}.0^{3.10}.0^{5.9}]$ undecane, $C_{11}H_{10}Br_2N_2O_4$, M_r = 394.03, monoclinic, $P2_1$, a = 6.788 (2), b =13.696 (4), c = 6.931 (2) Å, $\beta = 107.19$ (2)°, V = 615.5 (3) Å³, Z = 2, $D_x = 2.13$ Mg m⁻³, λ (Cu K α) = 1.54184 Å, $\mu = 8.58$ mm⁻¹, F(000) = 384, T =295 K, R = 0.041 for 1003 unique observed reflec-(3) 8,11-Dichloro-8,11-dinitropentacytions. $clo[5.4.0.0^{2.6}.0^{3.10}.0^{5.9}]$ undecane, $C_{11}H_{10}Cl_2N_2O_4$, M_r = 305.11, monoclinic, $P2_1$, a = 6.773 (3), b = 13.579 (7), c = 6.834 (4) Å, $\beta = 107.24$ (4)°, V =600.3 (6) Å³, Z = 2, $D_x = 1.69$ Mg m⁻³, λ (Mo K α) = 0.71073 Å, $\mu = 0.55$ mm⁻¹, F(000) = 312, T =295 K, R = 0.039 for 969 unique observed reflections. 8,11-Dinitropentacyclo[5.4.0.0^{2,6}.0^{3,10}.0^{5,9}]-(4) undecane, $C_{11}H_{12}N_2O_4$, $M_r = 236.22$, monoclinic, $P2_1/c$, a = 8.530 (1), b = 9.909 (1), c = 12.277 (1) Å, $\beta = 96.52 (2)^{\circ}, \quad V = 1031.0 (2) \text{ Å}^3, \quad Z = 4, \quad D_x = 4$ 1.52 Mg m⁻³, λ (Cu K α) = 1.54184 Å, μ = 0.95 mm⁻¹, F(000) = 496, T = 295 K, R = 0.048 for 1363 unique observed reflections. (5) 8,8,11,11-Tetranitropentacyclo $[5.4.0.0^{2,6}.0^{3,10}.0^{5,9}]$ undecane, $C_{11}H_{10}N_4O_8$, $M_r = 326.18$, monoclinic, $P2_1/n$, a =8.602 (2), b = 13.773 (3), c = 10.734 (2) Å, $\beta =$ $V = 1253.5(5) \text{ Å}^3, \qquad Z = 4,$ $D_r =$ 99·73 (1)°, 1.73 Mg m⁻³, Mo $K\alpha$, $\lambda = 0.71073$ Å, $\mu = 0.14$ mm⁻¹, F(000) = 672, T = 223 K, R = 0.046 for 1361 unique observed reflections. The cage moieties in all five structures are quite similar in that the C—C bonds linking the substituted carbons C(8) and C(11) to the cyclobutane ring are abnormally short [av. 1.516(7)Å] as are the bonds involving the

0108-2701/91/040813-05\$03.00

bridgehead atom C(4) [av. 1.515(7) Å], while the C—C cage bond across from the cyclobutane ring [C(9)—C(10)], on the other hand, is longer than normal [av. 1.584(6) Å].

Introduction. There is considerable current interest in the synthesis and chemistry of new energetic polycyclic 'cage' compounds (e.g. Sollott & Gilbert, 1980; Eaton, Ravi Shankar, Price, Pluth, Gilbert, Alster & Sandus, 1984; Marchand & Suri, 1984; Marchand & Reddy, 1984; Paquette, Fisher & Engel, 1985; Paquette, Nakamura & Engel, 1986; Marchand, Sharma, Annapurna & Pednekar, 1987; Marchand, Arney & Dave, 1988; Marchand, 1988; Marchand, Dave, Rajapaksa, Arney, Flippen-Anderson, Gilardi & George, 1989; Marchand, 1989; Zajac, Walters & Woods, 1989). In this connection we have recently synthesized several new substituted pentacyclo- $[5.4.0.0^{2.6}.0^{3,10},0^{5.9}]$ undecanes, (1)–(5). Three of these compounds, (2), (3) and (5), are particularly highly congested in the region between the 8- and 11positions in the pentacycloundecyl cage system. The structures of these compounds were studied as part of a continuing investigation of the structural parameters of energetic substituents in polynitropolycyclic cage molecules. The structural parameters thereby obtained provide a basis for computational modelling of other molecules in this series that have not yet been synthesized.

Experimental. Table 1 lists the experimental data collection parameters. All data sets were corrected for Lorentz and polarization effects after collection on a Nicolet R_{3v} diffractometer. Compounds (1)–(4) were synthesized at Villanova by Zajac and Walters and compound (5) was synthesized at the University of North Texas by Marchand *et al.* Empirical absorption corrections were applied to data sets (1) and (2) (transmission factors are given in Table 1).

00 © 1991 International Union of Crystallography

	(1)	(2)	(3)	(4)	(5)
Crystal size (mm)	$0.07 \times 0.30 \times 0.35$	$0.10 \times 0.12 \times 0.25$	$0.10 \times 0.12 \times 0.15$	$0.05 \times 0.40 \times 0.50$	$0.15 \times 0.25 \times 0.40$
Number of reflections used to determine cell	25	25	24	25	23
parameters and 2θ range(°)	$34 < 2\theta < 60$	33 < 2 <i>θ</i> < 78	$28 < 2\theta < 32$	$38 < 2\theta < 78$	$26 < 2\theta < 34$
$2\theta \max(^{\circ})$	125	125	50	120	45
Data range					
h	0 to 12	-7 to 0	0 to 8	-9 to 9	0 to 9
k	0 to 8	0 to 15	0 to 16	0 to 11	0 to 14
I	-13 to 12	-7 to 7	-8 to 7	-13 to 0	-11 to 11
Standard reflections	400	200	200	400	600
	040	060	060	ī50	040
	006	003	003	004	004
Variation on standard reflections %	2.7	2.5	2.0	4·0	2.8
2θ scan speed (variable) min./max. (° min ⁻¹)	5/30	10/30	8/30	6/30	8/30
Unique reflections	1384, $I > \sigma(I)$	1003, $I > \sigma(I)$	969, $I > \sigma(I)$	1363, $I > \sigma(I)$	1361, $I > \sigma(I)$
R _{int}	0.01	0.03	0.01	0.01	0.01
g(weight)	0.00023	0.00023	0.00023	0.00025	0.000225
p (secondary extinction)		0.003 (2)	0.032 (4)	0.0010 (2)	
Absorption correction (max./min. transmission)	0.811/0.456	0.86/0.46			
Parameters refined	145	171	212	203	236
Non-hydrogen atoms	Anisotropic	Anisotropic	Anisotropic	Anisotropic	Anisotropic
Hydrogen atoms	Riding	Riding	Isotropic	Isotropic	Coordinates only, B's fixed
$(\Delta / \sigma_{\rm max})$	0.001	0.001	0.03	0.002	0.005
R	0.038	0.041	0.039	0.048	0.046
wR	0.050	0.021	0.041	0.052	0.044
S	2.29	2.23	1.67	2.5	1.82
Final difference map excursion (e $Å^{-3}$)	0.30/-0.38	0.85/-0.45	0.19/-0.23	0.20/-0.21	0.38/-0.37

Since the structure-factor calculations include anomalous dispersion it was possible to use the Rogers η parameter (Rogers, 1981) to give an indication of the absolute configuration for (2) and (3) [$\eta = 0.97$ (14) for (2) and 0.61 (55) for (3)]. All structures were solved by direct methods and refined by full-matrix least-squares on F. $\sum w(|F_o| - |F_c|)^2$ minimized where $w = 1/\sigma^2[|F_o| + g(F_o)^2]$, secondary isotropic extinction (when applied) from $F_c^* = F_c/[1.0 + 0.002(p)F_o^2/\sin 2\theta]^{0.25}$. Values used for g and p are given in Table 1. All calculations were performed using the SHELXTL system (Sheldrick, 1980).†

Final atomic coordinates and equivalent isotropic displacement parameters are given in Table 2 for molecules (1)–(5), bond lengths and angles are listed in Table 3. Fig. 1 shows the atom numbering used for the cage system and Fig. 2 illustrates the results of the X-ray studies on the five molecules.

Discussion. The cage moieties in all five molecules are structurally very similar. The C—C bonds linking the substituted carbons C(8) and C(11) to the cyclobutane ring are abnormally short [av. 1.516 (7) Å] as are the bonds involving the bridgehead atom C(4) [av. 1.515 (7) Å]. On the other hand, the C—C cage bond across from the cyclobutane ring [C(9)—C(10)] is longer than normal [av. 1.584 (6) Å] while all the

other C-C cage bonds fall into normal ranges [av. 1.551(7) Å]. The C—C—C angle at C(4) is also significantly smaller than normal [av. 95.2 (4)°]. Similar anomalies have been noted in other structures involving the same pentacyclo ring system (Flippen-Anderson, Gilardi, George, Marchand & Reddy, 1989, and references therein). The major differences between the structures lie in the C(8)...C(11) nonbonded intramolecular distances which range from 2.611 in (4) to 2.857 Å in (2). The differences are related to the substitution at these atoms with the separation between the two atoms correlating well with the differences in the crystal volume (Immirzi & Perini, 1977) of the substituent moieties. In (4), which has the smallest C(8)...C(11) separation there is only a single NO₂ group on each C atom and they are both equatorial to the ring system. In (1), C(8) is doubly substituted with a Br (equatorial) and an NO_2 group (axial) to the ring system but there is only a carbonyl oxygen on C(11) and the C(8)...C(11) approach increases to 2.659 Å. In (2), (3) and (5) both of these atoms are doubly substituted with all three molecules having two NO₂ groups axial to the ring system and approximately parallel to one another. For (5), with two additional equatorial NO_2 groups, the $C(8)\cdots C(11)$ distance increases to 2.828 Å; in (3), with Cl atoms equatorial to the cage, the distance is 2.846 Å and the largest separation (2.857 Å) is found in (2) where the other two equatorial substitutents are Br atoms. Another unusual, yet consistent, departure from 'normal geometry' is noted in (5) which has two geminal dinitro groups. The C-N distances for the axial nitro groups aver-

[†] Lists of structure factors, anisotropic thermal parameters and H-atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 53412 (35 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

Table 2. Atomic coordinates $(\times 10^4)$ and equivalent isotropic displacement coefficients $(Å^2 \times 10^3)$

Table 2 (cont.)

iso	tropic displa	cement coeff	icients ($A^2 \times$	103)		x	у	2	:	U_{eq}
U_{eq} is defined as one third of the trace of the orthogonalized U_{ij} tensor.			(5) C(1) - C(2) -	-981 (4) -449 (4)	3424 (2) 2455 (2) 2522 (2)	3261 (3) 2716 (3)		27 (1) 29 (1)		
(1)	x	у	Ζ	$U_{ m eq}$	C(3) C(4) C(5)	- 816 (4) 721 (4) 1696 (4)	2322 (2) 2264 (2) 2994 (2)	12 8 16	32 (3) 89 (3)	34(1) 30(1)
C(11) C(1) C(7)	667 (3) 1194 (3) 88 (4)	5369 (4) 4172 (4) 3447 (4)	3016 (3) 2385 (3) 1259 (3)	37 (1) 37 (1) 42 (1)	C(8) C(7) C(8)	774 (4) 1262 (3) 821 (3)	2787 (2) 3761 (2) 4481 (2) 3972 (2)	30 35 26	66 (3) 49 (3) 81 (3)	26 (1) 25 (1) 23 (1)
C(8)	-1215(4) -1387(3)	4128 (4)	1105 (3)	41 (1) 40 (1)	C(10) -	- 968 (3)	3644 (2)	10	67 (3)	22 (1)
C(10)	- 264 (3)	4325 (4)	3346 (3)	37 (1)	N(11a) -	1926 (3) 2443 (3)	3886 (2) 4929 (2)	20	92 (3) 02 (3)	24 (1) 34 (1)
C(3) C(2)	1267 (3)	2550 (4)	3057 (3)	44 (1)	O(11a) - O(11b) -	2882 (4) 2464 (3)	5364 (2) 5248 (2)	12 32	10 (3) 44 (2)	71 (1) 52 (1)
C(6) C(5)	164 (4) - 1020 (4)	1824 (4) 1774 (4)	1937 (3) 2285 (3)	45 (1) 46 (1)	N(11b) - O(11c) -	3563 (3) 4090 (3)	3382 (2) 3018 (2)	17	65 (3) 24 (2)	36 (1) 59 (1)
C(4) Br(11)	412 (5) 2072 (1)	1406 (4) 6269 (1)	3591 (4) 4401 (1)	54 (2) 66 (1)	O(11d) -	4212 (3)	3396 (2) 5532 (2)	6 27	75 (3) 44 (3)	69 (1) 30 (1)
N(11) O(11a)	32 (3) 500 (3)	6885 (3) 7429 (3)	2296 (3) 1641 (3)	45 (1) 63 (1)	O(8 <i>a</i>)	321 (4)	5969 (2)	17	70 (2)	67 (1)
O(11 <i>b</i>)	- 902 (3)	7457 (3)	2434 (3)	73 (2)	N(8 <i>b</i>)	855 (3) 3075 (3)	4622 (2)	29	23 (3)	36 (1)
(8)	- 1983 (3)	4638 (3)	275 (2)	J9 (1)	O(8c) O(8d)	3798 (3) 3645 (3)	4310 (2) 5059 (2)	39 21	10 (3) 22 (3)	56 (1) 61 (1)
(2) C(11) C(1)	2098 (14) 684 (13)	10627 (7) 10389 (7)	- 952 (13) 335 (14)	41 (3) 44 (3)	Table 3	. Bond ler	lengths (Å) and bond angles (
C(7) C(8)	1592 (14) 3761 (13)	9667 (7) 9308 (7)	2101 (15) 2318 (13)	45 (3) 42 (3)		(1)	(2)	(3)	(4)	(5)
C(9)	3528 (14)	8883 (7)	227 (13)	41 (3)	C(1)—C(2)	1.551 (5)	1.566 (13)	1.563 (7)	1.550 (3)	1.557 (4)
C(10) C(3)	387 (14)	9211 (7)	-2534 (14)	45 (3)	C(1)—C(11) C(1)—C(7)	1·511 (6) 1·564 (4)	1·525 (15) 1·552 (13)	1·498 (8) 1·557 (7)	1·508 (3) 1·564 (4)	1·515 (4) 1·560 (4)
C(2) C(6)	- 641 (14) 241 (13)	9542 (8) 8826 (7)	- 924 (14) 801 (13)	44 (3) 43 (3)	C(2)C(3) C(2)C(6)	1·540 (6) 1·557 (4)	1·548 (15) 1·525 (13)	1·541 (9) 1·522 (7)	1·540 (3) 1·551 (4)	1·548 (4) 1·550 (5)
C(5) C(4)	1689 (14) 613 (17)	8174 (8) 8108 (7)	30 (14) - 2193 (16)	47 (3) 55 (4)	C(3) - C(4) C(3) - C(10)	1.521 (6)	1·531 (14) 1·563 (12)	1.504 (9)	1·519 (3)	1.512 (5)
Br(11) N(11)	555 (2) 3879 (13)	11370 11308 (8)	- 3328 (2) - 95 (13)	66 (1) 52 (3)	C(4)C(5)	1.514 (6)	1.500 (13)	1.513 (8)	1.516 (4)	1.517 (4)
O(11 <i>a</i>) O(11 <i>b</i>)	3641 (14) 5411 (13)	11937 (7) 11189 (6)	1033 (16) - 574 (14)	81 (4) 71 (4)	C(5)—C(9) C(5)—C(9)	1.549 (5)	1.555 (14)	1.550 (8)	1.545 (3)	1.551 (4)
Br(8)	4535 (2) 5487 (13)	8246 (1) 10024 (7)	4376 (2) 3137 (11)	67 (1) 51 (3)	C(6)—C(7) C(7)—C(8)	1.496 (6)	1.578 (13)	1.573 (7)	1.520 (3)	1.506 (4)
O(8a)	5247 (14)	10619 (8)	4336 (15)	90 (4) 75 (3)	C(8)C(9) C(9)C(10)	1·516 (6) 1·576 (4)	1·526 (13) 1·579 (12)	1·508 (7) 1·600 (7)	1·517 (3) 1·578 (3)	1·521 (4) 1·585 (4)
0(80)	7033 (11)	99 4 3 (8)	2019 (12)	(3)	C(10)—C(11) C(11)—N(11)	1·521 (6) 1·526 (4)	1·526 (13) 1·504 (13)	1·526 (8) 1·512 (7)	1·527 (3) 1·517 (3)	1·519 (4) 1·513 (4)
(3) C(1)	4385 (7)	6944 (A)	4738 (8)	37 (2)	C(8) - N(8) C(11) - X	1·948 (3)"	1·502 (12) 1·956 (09)"	1·515 (7) 1·797 (5)'	1.506 (3)	1·518 (4) 1·557 (4) ^d
C(2)	5690 (7)	6077 (4) 5736 (4)	5980 (8) 7617 (8)	41 (2)	C(8) - X N-O	1·202 (4) [*]	1.996 (09)	1.812 (6)	1.218 (3)	1 550 (4) 1 205 (4)
C(3) C(4)	4398 (12)	4645 (5)	7277 (10)	55 (2)	11 0	1.215 (5)	1.209 (14)	1.199 (7)	1.209 (3)	1.208 (4)
C(5) C(6)	3336 (9) 4786 (8)	4720 (5) 5371 (5)	4998 (8) 4211 (8)	47 (2) 41 (2)			1.211 (12)	1.217 (8)	1.213 (3)	1 218 (4)
C(7) C(8)	3466 (7) 1288 (7)	6229 (4) 5874 (4)	2912 (7) 2727 (7)	36 (2) 40 (2)						1·224 (4) 1·203 (4)
Cl(8) N(8)	558 (3) - 439 (6)	4920 (2) 6607 (5)	790 (2) 1876 (6)	69 (1) 53 (2)						1·211 (4) 1·213 (4)
O(8 <i>a</i>)	- 227 (7)	7201 (5)	646 (8) 2386 (6)	92 (2) 74 (2)	C(7)—C(1)—C(2)	90·5 (2)	89.8 (7)	89·7 (4)	89.5 (2)	89.9 (2)
C(9)	1513 (7)	5441 (4)	4813 (7)	38 (2)	C(2)—C(1)—C(11 C(7)—C(1)—C(11) 103·3 (3)) 112·1 (3)	100·9 (8) 115·2 (8)	101-4 (4) 116-2 (4)	105·5 (2) 110·3 (2)	101-5 (2) 114-4 (3)
C(10) C(11)	3014 (7)	7190 (4)	6032 (8)	30 (2) 39 (2)	C(1) - C(2) - C(3) C(1) - C(2) - C(6)	108·4 (3) 89·7 (6)	108·1 (8) 90·7 (8)	108·7 (4) 90·7 (4)	107·5 (2) 90·5 (2)	107·9 (2) 90·3 (2)
CI(11) N(11)	4458 (3) 1216 (7)	7868 7882 (4)	8253 (2) 5173 (7)	51 (2)	C(3)—C(2)—C(6)	102.7 (3)	102.8 (8)	103·1 (4) 99·5 (4)	103·2 (2)	102.6 (3)
O(11 <i>a</i>) O(11 <i>b</i>)	- 299 (7) 1438 (7)	7769 (4) 8520 (4)	5713 (8) 4006 (9)	77 (2) 84 (2)	C(4) - C(3) - C(10)	$100^{-5}(3)$	104.0 (7)	104.3 (5)	103.6 (2)	104.6 (3)
					C(2) - C(3) - C(4) C(3) - C(4) - C(5)	94.9 (3)	95·4 (8)	95·3 (5)	95·5 (2)	94.8 (2)
(4) C(11)	4521 (3)	342 (2)	2310 (2)	53 (1)	C(4)—C(5)—C(6) C(4)—C(5)—C(9)	103·6 (3) 104·6 (3)	103·1 (7) 105·2 (8)	104·0 (5) 104·5 (5)	104·0 (2) 103·9 (2)	104·4 (3) 104·4 (2)
N(11) O(11 <i>a</i>)	5487 (2) 5388 (3)	701 (2)	1386 (2) 1008 (2)	68 (1) 102 (1)	C(6)—C(5)—C(9) C(2)—C(6)—C(7)	101·3 (3) 90·5 (3)	100·7 (8) 90·3 (7)	100·7 (5) 90·5 (4)	100·4 (2) 90·0 (2)	100·4 (3) 90·1 (2)
O(11 <i>b</i>)	6281 (2) 2026 (2)	- 186 (3)	1053 (2)	95 (1)	C(5)-C(6)-C(7)	107.7 (3)	107-4 (7)	108.0 (4)	107·6 (2) 102·9 (2)	108·3 (2) 102·8 (2)
C(7)	2971 (3)	1137 (2)	3819 (2)	61 (1)	C(1) - C(7) - C(8)	110-6 (3)	115.6 (9)	114.3 (4)	110.2 (2)	115.2 (2)
C(8) N(8)	2929 (3) 2122 (3)	- 392 (2) - 836 (2)	4875 (2)	65 (1)	C(6) - C(7) - C(8) C(6) - C(7) - C(1)	89·3 (2)	89·2 (6)	89.1 (3)	90·0 (2)	89.7 (2)
O(8a) O(8b)	2721 (3) 918 (3)	- 493 (3) - 1497 (2)	5774 (2) 4741 (2)	105 (1) 98 (1)	C(7) - C(8) - C(9) C(7) - C(8) - X	104·4 (3) 128·1 (4) ^a	101-8 (7) 110-5 (7) ⁶	102·8 (3) 109·6 (4)'	101-3 (2)	103-0 (2) 110-0 (2) ^d
C(9) C(10)	2023 (3) 2980 (3)	- 766 (2) - 333 (2)	2813 (2) 1843 (2)	49 (1) 48 (1)	C(7)C(8)N(8) C(9)C(8)X) 127·4 (4) ^a	116·8 (8) 109·4 (6)*	116·3 (5) 109·9 (4)'	111-3 (2)	118·1 (3) 108·5 (2)⁴
C(3) C(2)	1975 (3) 2359 (3)	841 (2) 1960 (2)	1306 (2) 2167 (2)	55 (1) 62 (1)	C(9)—C(8)—N(8) N(8)—C(8)—X		117·2 (8) 101·2 (5)	118·0 (5) 100·2 (3) ^c	113-2 (2)	117·9 (2) 99·0 (2) ⁴
C(6)	1412 (3)	1529 (2)	3115 (2)	63 (1) 58 (1)	C(5)-(9)-C(10) C(5)-C(9)-C(8)	102·1 (2) 101·5 (3)	102·1 (6) 100·2 (8)	101-7 (4) 100-3 (4)	102·5 (2) 104·7 (2)	102·5 (2) 99·8 (2)
C(4)	296 (3)	434 (3)	1453 (2)	64 (1)	C(8)—C(9)—C(10)) 111-1 (3)	114.6 (8)	114.5 (5)	110.2 (2)	114.1 (3)

Table 3 (cont.)						
	(1)	(2)	(3)	(4)	(5)	
C(3)-C(10)-C(11)	102.5 (3)	99·5 (7)	100.4 (4)	104.0 (2)	99.6 (2)	
C(9)-C(10)-C(11)	110.7 (3)	114.8 (7)	113.9 (4)	109.5 (2)	114.2 (2)	
C(9) - C(10) - C(3)	102.6 (3)	102.4 (7)	101.7 (4)	102.5 (2)	101.4 (2)	
C(1)C(11)C(10)	102.9 (3)	102-2 (8)	102.4 (4)	101.7 (2)	103.1 (2)	
C(1)-C(11)-X	111.0 (2)	109·3 (6) ⁶	109·6 (3) ^c		117.2 (2)	
C(10)-C(11)-X	111·8 (2) ^b	110.1 (6)	109·5 (3) ^c		117.9 (2)	
C(1)-C(11)-N(11)	114-2 (3)	118-2 (8)	118.6 (4)	112.7 (2)	109.7 (2)	
C(10)-C(11)-N(11)	114-0 (3)	116.7 (8)	116-1 (4)	109.8 (2)	108.6 (2)	
N(11)-C(11)-X	103·3 (2) ^b	100·2 (6) ^b	100·6 (4) ^c		100.0 (2)	
C(8)N(8)O		116.8 (9)	118.0 (5)	117.0 (2)	117.9 (3)	
		118-4 (9)	117.5 (5)	120.4 (2)	117.2 (3)	
			•		118-1 (3)	
					116-1 (2)	
O—N(8)—O		124.8 (10)	124.3 (5)	122.6 (2)	124.9 (3)	
					125.7 (3)	
C(11)N(11)O	117-8 (3)	116-9 (9)	117.8 (5)	118.8 (2)	116.6 (3)	
	117-0 (4)	118-1 (9)	117-1 (5)	117.1 (2)	118.0 (3)	
					117.6 (3)	
					117.2 (2)	
0—N(11)—O	125-1 (3)	125.0 (10)	125-2 (5)	124.1 (3)	125.3 (3)	
					125-2 (3)	
Notes:	(a)X = O	(b)X = Br.	(c)X = CL	dX = N		

age 1.515 (4) Å while the average value for the corresponding equatorial nitro groups is 1.554 (4) Å. Similar distances were found in the hexanitro analog of (5) (Marchand, Dave, Rajapaksa, Arney, Flippen-

Anderson, Gilardi & George, 1989). It should be noted, however, that in (4), which has only the two equatorial NO₂ groups, the average C—N distance is 1.512 (3) Å while in (1), which has only a single NO₂ group axial to the ring system, the C—N distance is intermediate between the two values at 1.526 (4) Å.

Fig. 1. The numbering scheme used for the cage portion of all five molecules.

Fig. 2. The results of the X-ray studies on molecules (1)-(5). The thermal ellipsoids are shown at the 20% probability level.

APM thanks the Robert A. Welch Foundation (Grant B-963), the Air Force Office of Scientific Research (Grant AFOSR-88-0132) and the US Army Armament Research Development and Engineering Arsenal, (Contract Center. Picatinny NJ DAAA21-86-C-0091) for financial support of this study. WWZ thanks the US Army Armament Research Development and Engineering Center, Picatinny Arsenal, NJ (Contract nos. DAAK10-85R-0104 and DAAA 21-86-C-0101) for financial support of this study. The NRL authors were supported, in part, by the Mechanics Division of the Office of Naval Research.

References

- EATON, P. E., RAVI SHANKAR, B. K., PRICE, G. D., PLUTH, J. J., GILBERT, E. E., ALSTER, J. & SANDUS, O. (1984). J. Org. Chem. 49, 185-186.
- FLIPPEN-ANDERSON, J. L., GILARDI, R., GEORGE, C., MARCHAND, A. P. & REDDY, G. M. (1989). Acta Cryst. C45, 661-663.
- IMMIRZI, A. & PERINI, B. (1977). Acta Cryst. A33, 216–218.
- MARCHAND, A. P. (1988). Tetrahedron, 44, 2377-2395.

- MARCHAND, A. P. (1989). In Advances in Theoretically Interesting Molecules, Vol. 1, edited by R. P. THUMMEL, pp. 357–397. Greenwich, CT: JAI Press.
- MARCHAND, A. P., ARNEY, B. E. JR & DAVE, P. R. (1988). J. Org. Chem. 53, 443-446.
- MARCHAND, A. P., DAVE, P. R., RAJAPAKSA, D., ARNEY, B. E. JR., FLIPPEN-ANDERSON, J. L., GILARDI, R. & GEORGE, C. (1989). J. Org Chem. 54, 1769–1771.
- MARCHAND, A. P. & REDDY, D. S. (1984). J. Org. Chem. 49, 4078-4080.
- MARCHAND, A. P., SHARMA, G. V. M., ANNAPURNA, G. S. & PEDNEKAR, P. R. (1987). J. Org Chem. 52, 4784–4788.
- MARCHAND, A. P. & SURI, S. C. (1984). J. Org. Chem. 49, 2041–2043.
- PAQUETTE, L. A., FISCHER, J. W. & ENGEL, P. (1985). J. Org Chem. 50, 2524–2527.
- PAQUETTE, L. A., NAKAMURA, K. & ENGEL, P. (1986). Chem. Ber. 119, 3782–3800.
- ROGERS, D. (1981). Acta Cryst. A37, 734-741.
- SHELDRICK, G. M. (1980). SHELXTL. An Integrated System for Solving, Refining and Displaying Crystal Structures from Diffraction Data. Univ. of Göttingen, Germany.
- SOLLOTT, G. P. & GILBERT, E. E. (1980). J. Org. Chem. 45, 5405–5408.
- ZAJAC, W. W. JR, WALTERS, T. R. & WOODS, J. M. (1989). J. Org. Chem. 54, 2468-2471.

Acta Cryst. (1991). C47, 817-824

Structures of Three Photochromic Compounds and Three Non-Photochromic Derivatives; the Effect of Methyl Substituents

BY WILLIAM CLEGG AND NICHOLAS C. NORMAN

Department of Chemistry, The University, Newcastle upon Tyne NE1 7RU, England

AND TIMOTHY FLOOD, LARRY SALLANS, WON SUK KWAK, PATRICIA L. KWIATKOWSKI AND JON G. LASCH PPG Chemicals Technical Center, Monroeville, PA 15146, USA

(Received 17 April 1990; accepted 7 August 1990)

Abstract. (1)1,3,3-Trimethylspiro{indoline-2,3'-(3'H)-[1,4]oxazino(3'H)-[3,2-f][quindine}, C₂₁H₁₉N₃O, $M_r = 329.4$, monoclinic, $P2_1/n$, a = 10.999 (1), b = 14.983 (1), c = 21.351 (2) Å, $\beta = 97.259$ (8)°, V = 3490.4 Å³, Z = 8, $D_x = 1.253$ g cm⁻³, λ (Cu K α) = 1.54184 Å, $\mu = 5.9$ cm⁻¹, F(000) = 1392, T = 295 K, R = 0.064 for 3999 unique observed reflections. (2) 1,2',3,3-Tetramethylspiro{indoline-2,3'(3'H)-[1,4]oxazino[3,2-f]quindine}, $C_{22}H_{21}N_3O$, $M_r = 343.4$, monoclinic, $P2_1/c$, a = 7.3093 (4), b = 22.3464 (14), c = 10.9473 (8) Å, $\beta = 94.848$ (5)°, V = 1781.7 Å³, Z = 4, $D_x = 1.280 \text{ g cm}^{-3}$, μ (Cu $K\alpha$) = 6.0 cm⁻¹, F(000) = 728, T = 295 K, R = 0.043 for 2574 unique reflections. (3) observed 5-Methoxy-1,3,3trimethylspiro{indoline-2,3'(3'H)-[1,4]oxazino[3,2-f]quindine}, $C_{22}H_{21}N_3O_2$, $M_r = 359.4$, monoclinic,

 $P2_{1}/n$, a = 11.5201(5),b = 10.7143(5),c =16.0914 (7) Å, $\beta = 108.075$ (4)°, V = 1888.1 Å³, Z =4, $D_x = 1.264 \text{ g cm}^{-3}$, $\mu(\text{Cu } K\alpha) = 6.3 \text{ cm}^{-1}$, F(000) = 760, T = 295 K, R = 0.061 for 2091 uniqueobserved reflections. (4) 5-Methoxy-1,2',3,3-tetramethylspiro{indoline-2,3'(3'H)-[1,4]oxazino-[3,2-f]quindine}, $C_{23}H_{23}N_3O_2$, $M_r = 373.5$, monoclinic, a = 9.9249(5),b = 16.7437 (8), $P2_{1}/n$, c =24.0188 (8) Å, $\beta = 100.299$ (3)°, V = 3927.1 Å³, Z =8, $D_x = 1.263 \text{ g cm}^{-3}$, $\mu(\text{Cu } K\alpha) = 6.2 \text{ cm}^{-1}$, F(000)= 1584, T = 295 K, R = 0.062 for 3246 unique observed reflections. (5) 1',3',3'-Trimethyl-6-nitrospiro[benzopyran-2(2H),2'-indoline], $C_{19}H_{18}N_2O_3$, $M_r = 322.4$, monoclinic, $P2_1/n$, a = 16.146 (1), b = 10.979 (1), c = 19.728 (1) Å, $\beta = 105.826$ (5)°, V =3364.6 Å³, Z = 8, $D_x = 1.273$ g cm⁻³, μ (Cu K α) =

0108-2701/91/040817-08\$03.00

© 1991 International Union of Crystallography